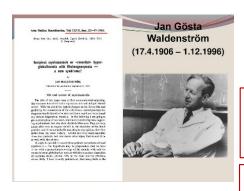
TREVISO 7-8 NOVEMBRE 2025

Update sulla Macroglobulinemia di Waldenström

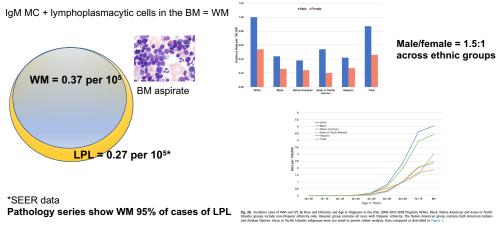
Francesco Piazza, MD

Dipartimento di Medicina – Università degli Studi di Padova


UOC di Ematologia - Azienda Ospedale Università Padova

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie			+			+	+
Roche			+			+	+
Kite Gilead	+		+			+	+
Takeda							
Janssen			+			+	+
Bejgene							+
Incyte			+			+	+



Clinicopathological Definition of Waldenstrom's Macroglobulinemia: Consensus Panel Recommendations From the Second International Workshop on Waldenstrom's Macroglobulinemia

Roger G. Owen, Steven P. Treon, Ayad Al-Katib, Rafael Fonseca, Philip R. Greipp, Mary L. McMaster, Enrica Morra, Gerassimos A. Pangalis, Jesus F. San Miguel, Andrew R. Branagan, and Meletios A. Dimopoulos

«WM is an **uncommon** B-cell lymphoproliferative disorder characterized primarily by **bone marrow infiltration** with a predominately intertrabecular pattern along with demonstration of an **IgM monoclonal gammopathy**.»

«The concentration of IgM varies widely in WM and it is not possible to define a concentration that reliably distinguishes WM from MGUS and other lymphoproliferative disorders.»

Median age: 71 years

WHO HEM5 2022

ICC 2022

Treon SP et al., IWWM-11 2023
gates in the bone marrow and evidence

Alaggio R. et al., Leukemia 2022, Campo E. et al., Blood 2022,

LPL if clonal lymphoplasmacytic aggregates represents ≥ 10% of BM cellularity.

Two subtypes of lymphoplasmacytic lymphoma (LPL)

- 1) IgM-LPL/ Waldenström Macroglobulinaemia (WM) type.
- 2) Non-WM type LPL represents around 5% of LPL and includes:
- (a) cases with IgG or IgA monoclonal proteins
- (b) non-secretory LPL
- (c) IgM LPL without bone marrow involvement

LPL if abnormal lymphoplasmacytic aggregates in the bone marrow and evidence of clonal B cells and plasma

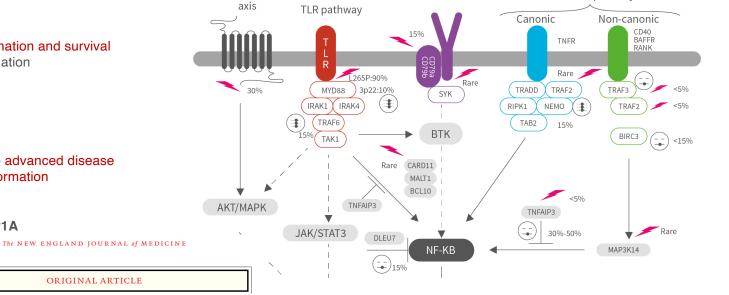
cells, even when the aggregates represent <10% of BM cellularity of the trephine biopsy

IgM MGUS = IgM paraprotein with <10% bone marrow plasma cells and lacking lymphoplasmacytic B-cell aggregates sufficient for a diagnosis of LPL

Two subtypes of IgM MGUS are now further distinguished:

- IgM MGUS, plasma cell type (no clonal lymphocytes, no MYD88 mut;
 IGH::CCND1 or other myeloma associated IGH rearrangements may be present).
- IgM MGUS, not otherwise specified

NF-KB pathway


WM: Pathobiology

Cytogenetic abnormalities:

- Del 6q in 25-50% negatively affects time to transformation and survival
- t(9;14)(p13.2;q32.33) in up to 50% but it needs validation
- **Trisomy 4** in 20%
- del17p 7-15% associated with poor prognosis

Gene mutations:

- Somatic Hypermutations partial usage of IGHV
- ARID1A in 17% possible association with more advanced disease
- **CD79B** 8-15% possible association with transformation
- TP53 <10% it needs further studies
- TERT worse outcome
- Less frequent mutations like KMTD2 e MYBBP1A
- MYD88 in up to 95% of patients
- CXCR4 in up to 40% of patients

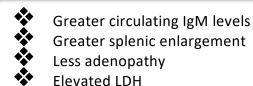
BCR pathway

CXCLL12/CXCR4

MYD88 L265P Somatic Mutation in Waldenström's Macroglobulinemia

Steven P. Treon, M.D., Ph.D., Lian Xu, M.S., Guang Yang, Ph.D., Yangsheng Zhou, M.D., Ph.D., Xia Liu, M.D., Yang Cao, M.D., Patricia Sheehy, N.P., Robert J. Manning, B.S., Christopher J. Patterson, M.A., Christina Tripsas, M.A., Luca Arcaini, M.D., Geraldine S. Pinkus, M.D., Scott J. Rodig, M.D., Ph.D., Aliyah R. Sohani, M.D., Nancy Lee Harris, M.D., Jason M. Laramie, Ph.D., Donald A. Skifter, Ph.D., Stephen E. Lincoln, Ph.D., and Zachary R. Hunter, M.A.

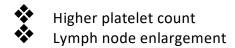
TREVISO, 7-8 NOVEMBRE 2025


LYMPHOID NEOPLASIA

A multiomic analysis of Waldenström macroglobulinemia defines distinct disease subtypes

Dylan C. Gagler,^{1,*} Hussein Ghamlouch,^{1,3,*} Di Zhang,¹ Patrick Blaney,¹ Avital Tenenbaum,¹ James Langton,¹ Marine Armand,^{4,6} Alexandre Eeckhoutte,⁴ Amina Joudat,⁴ Michaël Degaud,⁴ Michela Esposito,⁴ Gaurav Varma,¹ Yubao Wang,¹ Sanghoon Lee,¹ Sanxiong Liu,¹ Oscar Lahoud,¹ David Kaminetzky,¹ Marc Braunstein,¹ Louis Williams,⁷ Florence Nguyen-Khac,^{5,6} Brian Walker,⁸ Damien Roos-Weil,^{5,6,9} Faith E. Davies,¹ Olivier A. Bemard,⁴ and Gareth J. Morgan¹

Memory B cell like (MBC-like)

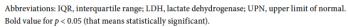

- Expanded population of MBCs blocked in their capacity to differentiate beyond the MBC stage.
- Peculiar IHC: CD24⁺, CD74⁺
 - Most of CXCR4, HIST1H1E, MAP3K14 mutations; overall higher mutational burden
 - Del(13q) more prevalent
 - Diminished NF-kB signaling
 - Upregulation of BCR signaling

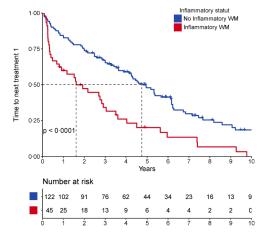
Plasma cell like (PC like)

Partial differentiation toward a PC

- Peculiar IHC: CD38+, CD138+, CD27+, FCRL5+
- SP140^{mut} esclusive of this subtype; overall lower mutational burden
- Del(6q) more prevalent
- Enhanced NF-kB signaling

e
Mututation
Peletion
Mutation
t Deletion
ft Insertion
Autation


Gagler DC et al. Blood 2025


Inflammatory WM (IWM)

- Retrospective analysis of WM patients seen in a single tertiary referral centre from January 2007 to May 2021
- Excluded aetiologies for the inflammatory syndrome using a pertinent blood workup, including C-reactive protein (CRP), and imaging
- Results: 67 (28%) IWM, 166 (68%) non-IWM, and 9 (4%) WM with inflammatory syndrome of unknown origin.

TABLE 1 Clinical and biological characteristics at treatment initiation of inflammatory and non-inflammatory Waldenström's macroglobulinaemia (WM)

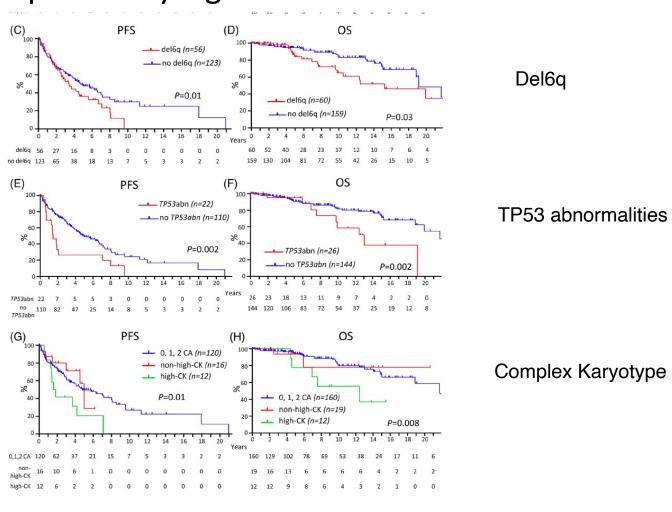
Characteristics	Inflammatory n = 64	Non-inflammatory $n = 134$	p
Year of diagnosis, median (range)	2008 (1985–2018)	2010 (1983–2019)	0.25
Age, median (range)	69 (45-94)	72 (37–90)	0.32
Male, n (%)	43 (67)	88 (66)	0.83
Adenopathy/hepatosplenomegaly, n (%)	21 (33)	40 (30)	0.67
Clinical hyperviscosity, n (%)	3 (5)	22 (16)	0.02
Monoclonal IgM, g/l, median (range)	24.9 (4.8-77.3)	23.0 (1.1-61.5)	0.28
Haemoglobin, g/l, median (range)	90 (69-139)	99 (51–148)	< 0.01
Platelet count, ×10 ⁹ /l, median (range)	245 (18-513)	196 (11–884)	< 0.01
C-reactive protein, mg/l, median (IQR)	43 (26-67)	6 (3–10)	< 0.0001
Serum albumin, g/l, median (range)	30.8 (20.0-42.9)	35.9 (22.2–47.6)	< 0.0001
Fibrinogen, g/l, median (range)	5.0 (2.5-7.7)	3.7 (1.4-6.4)	< 0.0001
LDH, U/l (ULN < 225 iu/l), median (range)	147 (87–277)	162 (76–977)	0.06

Overall survivals (OS) were similar (median OS: 17 vs 20 years; p = 0.11) but **time to next treatment (TNT) was significantly shorter for IWM** (TNT1: 1.6 vs 4.8 years, p < 0.0001). IWM mostly shared the same presentation and outcome as WM without inflammatory syndrome.

Inflammation in Waldenström macroglobulinemia is associated with 6q deletion and need for treatment initiation

Table 1. Patients	characteristics ass	sociated with i	inflammatory	status

		Univariate		Multivaria	ate
	Non-Inflammatory WM (n=103)	Inflammatory WM (n=119)	Р	OR[95CI]	Р
Clinical data					
Age at diagnosis (years), mean [range]	64.3 [28.4-86.6]	64.6 [35.1-88.2]	1.00		
Male, n (%)	61/103 (59)	86/119 (72)	0.77		
Lymphadenopathies, n (%)	14/101 (14)	38/118 (32)	0.04	2.2[0.7-8.0]	0.21
Splenomegaly, n (%)	8/100 (8)	17/118 (14)	1.00		
Hyperviscosity syndrome, n (%)	6/101 (6)	10/118 (9)	1.00		
Past history of dysimmune conditions, n (%)	11/92 (12)	6/110 (5)	1.00		
Biological data					
M spike (g/L), mean [range]	16.0 [0.1-71.0]	17.8 [1.0-58.0]	1.00		
Anaemia (< 11.5 g/dL), n (%)	31/66 (47)	75/101 (74)	<10 ⁻²	1.6[0.6-4.4]	0.32
Thrombocytopenia (< 100 G/L), n (%)	9/66 (14)	15/100 (15)	1.00		
Medullar infiltration (%), mean [range]	43 [10-97]	33 [10-95]	0.16		
CRP (mg/L), mean [range]	0.4 [0-4.4]	30.9 [5.0-263.0]	NR		
Albumin (g/L), mean [range]	40.4 [31.0-50.5]	36.3 [15.0-45.6]	<10 ⁻⁵	0.8[0.7-0.9]	<10 ⁻²
β2 microglobulin (mg/L), mean [range]	2.5 [1.2-12.0]	3.9 [1.5-33]	0.07		
IPSSWM: low; intermediate; high, n (%)	18/56 (32); 16/56 (29); 22/56 (39)	14/85 (16); 23/85 (27); 48/85 (56)	1.00		
Cytogenetic/molecular biology					
6q deletion, n (%)	8/74 (11)	41/104 (39)	<10 ⁻³	4.4[1.4-16.0]	0.02
TP53 abnormalities, n (%)	6/79 (8)	14/111 (13)	1.00		
Complex karyotype, n (%)	9/68 (13)	18/91 (20)	1.00		
MYD88 mutation, n (%)	65/71 (92)	83/93 (89)	1.00		
CXCR4 mutation, n (%)	18/66 (27)	19/91 (21)	1.00		
Follow-up					
Need for treatment initiation, n (%)	66/103 (64)	101/119 (85)	<10 ⁻²	NA	
ORR*, n (%); VGPR+CR, n (%)	38/64 (59); 12/64 (19)	61/96 (64); 20/96 (21)	1.00		
CRP after 1L treatment (mg/L), mean [range]	1.0 [0-16]	5.5 [0-69]	0.08		


^{*}ORR=CR+VGPR+PR. Abbreviations: OR, Odds Ratio; Cl, Confidence Interval; ORR, Overall Response Rate; VGPR, Very Good Partial Response; CR, Complete Response; 1L, fist-line; P, p-value; PR, Partial Reponse; DLBCL, Diffuse Large B Cell Lymphoma; IPSSWM, International Prognostic Scoring System of WM. Subgroup comparisons were performed using Chi-square of Fisher's exact test for categorical variables, and Student's t test for continuous variables. Multiple hypothesis correction was performed with Holm's method for univariate analysis. A multivariate logistic regression was performed for multivariate analysis.

- Eighty-three percent of del6q patients had CRP values ≥ 5 mg/L compared to 49% nondel6q WM patients.
- In multivariate analysis, only del6q (p=0.02) and albumin (p<10-2) were found to be significantly associated with inflammatory status, whereas lymphadenopathies and anaemia were not (Table 1).

Updated Data on Impact of Cytogenetic Abnormalities

Krzisch D et al AJH 2021

TREVISO, 7-8 NOVEMBRE 2025

Annals of Hematology https://doi.org/10.1007/s00277-024-05770-4

RESEARCH

Impact of the presence and number of chromosomal abnormalities on the clinical outcome in Waldenström Macroglobulinemia: a monocentric experience

Nicolò Danesin¹ · Laura Bonaldi² · Annalisa Martines² · Silvia Nalio² · Roberta Bertorelle² · Sofia Compagno² · Raffaella Marcato² · Sabrina Manni¹,³ · Federico Scarmozzino⁴ · Marco Pizzi⁴ · Angelo Paolo Dei Tos⁴ · Alessandro Cellini¹ · Greta Scapinello¹ · Andrea Visentin¹ · Livio Trentin¹ · Francesco Piazza¹,³

Coorte 2000-2023 N=207 Cariotipo in 85 Analisi in 64

Danesin N et al. Ann Hematol 2024.

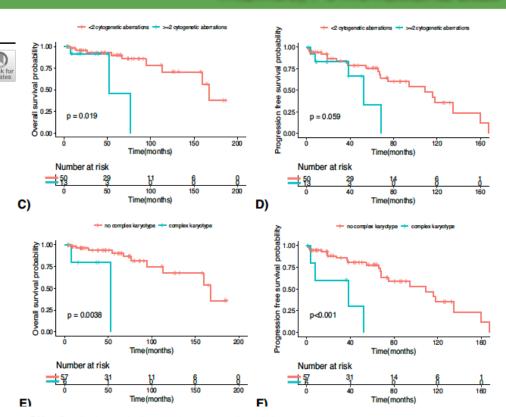


Table 4 Overall and progression free survival outcomes according to the karyotype

Subgroups	Median OS (months)	HR (CI 95%)	Pvalue	Median PFS (months)	HR (CI 95%)	P value
Normal karyotype	76.1	4.35 (1.27–14.86)	0.01	65.8	2.90 (1.24-6.83)	0.01
Abnormal karyotype	167.7			117.8		
≥2 cytogenetic aberrations	52.3	5.28 (1.15-24.31)	0.02	52.3	2.69 (0.92-7.81)	0.06
< 2 cytogenetic aberrations	167.7			108.9		
Complex karyotype	52.3	9.14 (1.56-26.11)	0.004	38.6	6.05 (1.85-19.79)	< 0.001
No complex karyotype	167.7			108.9		

HR=Hazard Ratio; CI 95%=95% confidence interval; OS=Overall Survival; PFS=Progression Free Survival

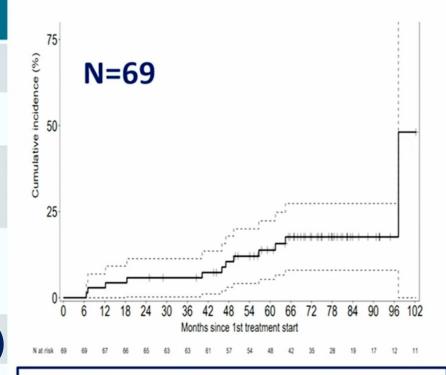
WM treatment

Chemo-Immunotherapy in Frontline WM: CR is rare!

Regimen	Overall response rate	Complete response	Median Progression Free Survival (months)
Rituximab x 4	25-30%	0-5%	13
Rituximab x 8	40-45%	0-5%	16-22
Rituximab/IMIDs	70%	5%	30
Rituximab/Cyclophosphamide/Dex	70-80%	5-15%	30-36
Rituximab/Nuceloside Analogues	70-90%	5-15%	36-62
Rituximab/Proteasome Inhibitors	70-90%	5-15%	42-66
Rituximab/Bendamustine	90%	5-15%	69

Reviewed in Dimopoulos et al, Blood 2014; 124(9):1404-11; Treon et al, Blood 2015 126:721-732; Rummel et al, Lancet Oncol 2016; 17:57-66.

Chemo-Immunotherapy in Frontline WM: be careful!


Agent	WM Toxicities
Rituximab	 IgM flare (40-60%)-> Hyperviscosity crisis, Aggravation of IgM related PN, CAGG, Cryos. Hypogammaglobulinemia-> infections, IVIG Intolerance (10-15%)
Fludarabine	 Hypogammaglobulinemia-> infections, IVIG Transformation, AML/MDS (15%)
Bendamustine	 Prolonged neutropenia, thrombocytopenia (especially after fludarabine) AML/MDS (5-8%)
Bortezomib	 Grade 2+3 Peripheral neuropathy (60-70%); High discontinuation (20-60%)

Treon et al, Blood 2015 126:721-732; Treon et al, JCO 2020; 38:1198-1208.

Resnonse		N	%
Type of Cytopenia	N	%	Duration (median)
Neutropenia	26	38%	9m (3-24)
Anemia	17	25%	6m (3-36)
Thrombocytopenia	11	16%	9m (3-36)

- Second malignancies: 12 patients (17.66%)
- 9 solid tumors (2 pancreas, 2 gastric, 1 colic, 1 oesophagus 1 lung, 1 skin, 1 breast)
- 3 MDS with 2 AML

Cumulative incidence of second malignancies of 17.66% [7.99-27.64] at 66 months.

Leblond et al, IWWM-12, 2024

1L therapy: BTKi for patients not suitable for CIT

Study	Cohort	Agent (s)	N=	Time to Major Resp.	ORR/Major RR	≥VGPR	PFS
Pivotal Study	R/R	Ibrutinib	63	2 mo.	91% / 79%	30%	54% @ 60 mo.
Phase 2	TN	Ibrutinib	30	1.9 mo.	100% / 87%	30%	76% @ 48 mo.
INNOVATE Arms A, B	TN, R/R	Ibrutinib Rituximab	150	3 mo.	92% / 76%	31%	68% @ 54 mo.
Phase 2	TN, R/R	Zanubrutinib	77	2.8 mo.	96% / 82%	45%	76% @ 36 mo.
ASPEN-1	TN, R/R	Ibrutinib	99	2.9 mo.	94% / 80%	25%	85% @ 42 mo.
(MYD88 ^{Mut})	TN, R/R	Zanubrutinib	102	2.8 mo.	95% / 81%	36%	88% @ 42 mo.
ASPEN-2 (MYD88 ^{WT})	TN, R/R	Zanubrutinib	28	3 mo.	78% / 63%	27%	84% @ 42 mo.
Phase 2	TN, R/R	Acalabrutinib	106	N/A	94% / 81%	39%	84% TN / 52% R/R (@ 66 mo.)
Phase 2	TN, R/R	Tirabrutinib	27	1.9 TN 2.1 R/R	96% / 93%	33%	93% @ 24 mo.

Median ORR 93%; MajorRR 81%; >=VGPR 30%; PFS 76% @4yrs

BTKi impact of the CXCR4 mutation

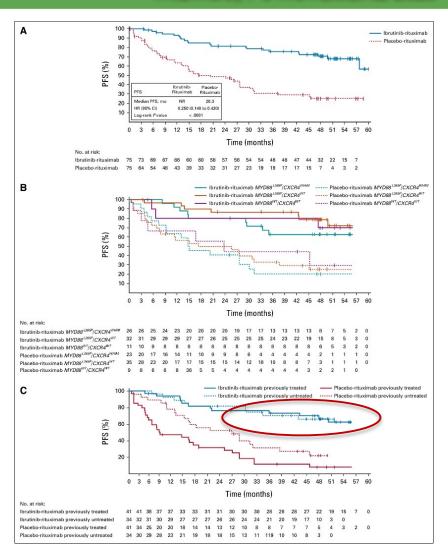
Study	Patient	Agent (s)	Time to Major	Major	≥VGPR	PFS
	Population		Response	Response Rate	(CXCR ^{Mut vs. WT})	(CXCR ^{Mut vs. WT})
			(CXCR ^{Mut vs. WT})	(CXCR ^{Mut vs. WT})		

CXCR4^{Mut} vs CXCR4^{WT}

Median Time to Major Response: (4.2 vs. 1.9 mos)

Median Major RR: 71% vs. 87%

Median ≥VGPR: 14% vs. 41%


PFS: 59% vs. 75% @4 years

						(@ 42 mo.)
ASPEN	TN, R/R	Ibrutinib	6.6 vs. 2.8 mos.	65% vs. 82%	10% vs. 24%	49% vs. 75%
Cohort 1						(@ 42 mo.)
	TN, R/R	Zanubrutinib	3.4 vs. 2.8 mos.	70% vs. 82%	18% vs. 34%	73% vs. 81%
						(@ 42 mo.)

- median PFS was not reached with Ibrutinib-Rituximab vs Rituximab alone, HR. 0.25, p
 < 0.0001 so meeting the primary endpoint.
- The benefit was regardless
 MYD88/CXCR4 mutational
 status, prior tx and key patient
 characteristics.

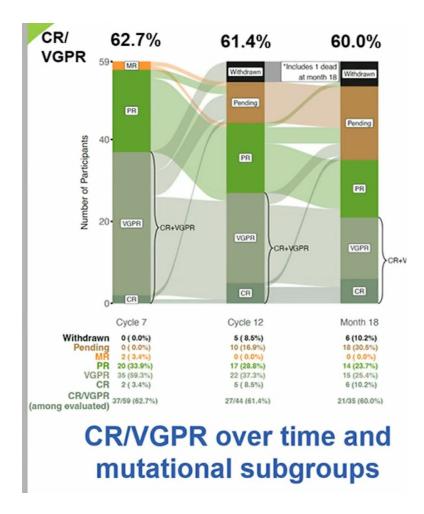
Same efficacy in untreated or previously treated

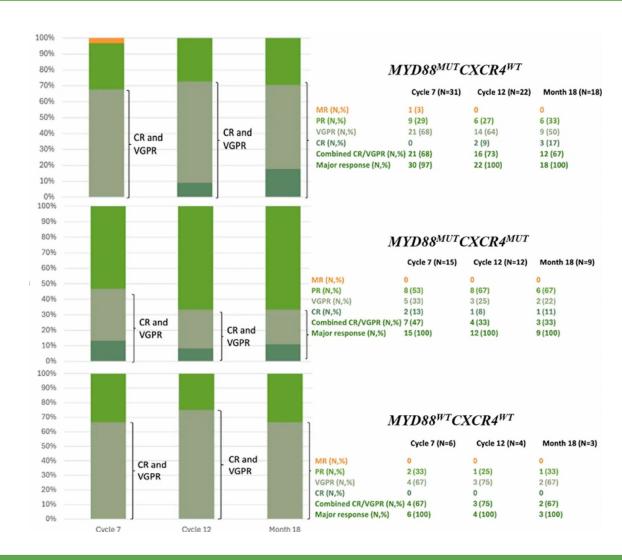
Buske C et al JCO 2022

1L therapy: New proposals:

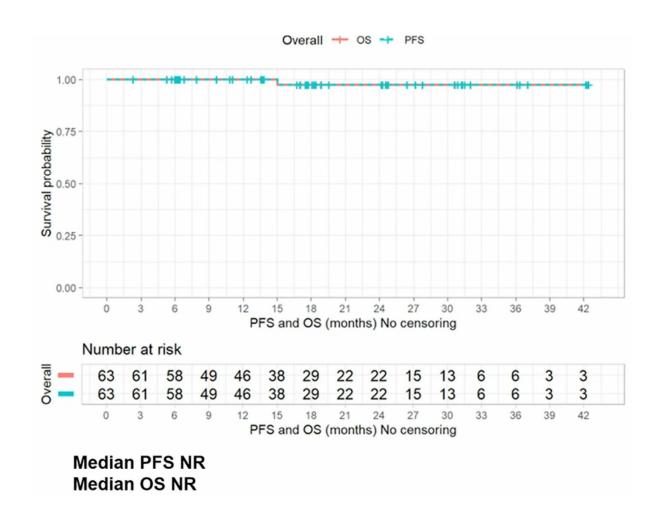
- Acala BR (studio BRAWN)
- Zanu BR (studio cinese)
- Bor-Ibr-R + maintenance Ibr + R (studio ECWM Prof. C. Buske)
- Carlfilzomib + Ibrutinib versus Ibrutinib
- Ibrutinib + venetoclax

L'IDEA E' DI RENDERE LA RISPOSTA PIU' PROFONDA E DURATURA

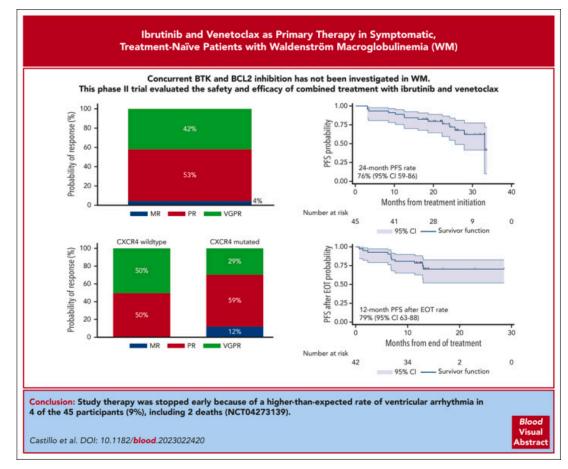

1L therapy: New proposals:


- Acala BR (studio BRAWN)
- Zanu BR (studio cinese)
- Bor-Ibr-R + maintenance Ibr + R (studio Buske)
- Carlfilzomib + Ibrutinib versus Ibrutinib
- Ibrutinib + venetoclax

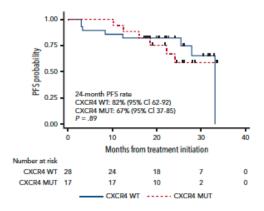
Sc	reening	Cycle 1-6	Cycle 7	Cycle 12	Cycle 18	Follow-Up
Treatment						
Bendamustine Rituximab Acalabrutinib				\Rightarrow		
Analysis						u u ju i
MRD Blood MRD Bone Marro Bone Marrow CT Scan	•		♦ ♦ ♦	♦ ♦ ♦	♦ ♦ ♦	\Q


Berenstein N, ICML 2025

TREVISO, 7-8 NOVEMBRE 2025


Berenstein N, ICML 2025

Highest VGPR and CR rates Reported for WM


1L therapy: New proposals:

- Acala BR (studio BRAWN)
- Zanu BR (studio cinese)
- Bor-Ibr-R + maintenance Ibr + R (studio Buske)
- Carlfilzomib + Ibrutinib versus Ibrutinib
- Ibrutinib + venetoclax

- Venetoclax 100mg>200mg>400mg
- ORR 100%(53% PR; 42% VGPR; 4% MR)
- No CR observed
- Grade 5 Ventricular Fib 9%

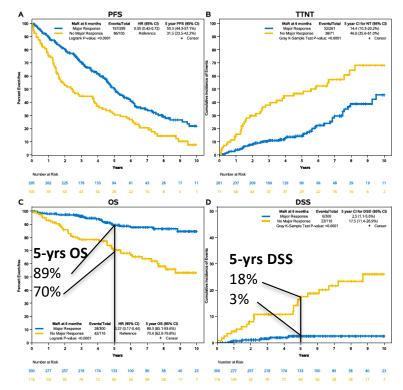
CXCR4 mutations were associated with a numerically, but not statistically significantly, lower VGPR rate (29% vs 50%) CXCR4 mutations did not impact PFS

Castillo J et al. Blood 2024

1L therapy: does quality of response really matter?

Depth of Response From Fixed-Duration Treatment Is Associated With Superior Survival in Waldenstrom Macroglobulinemia

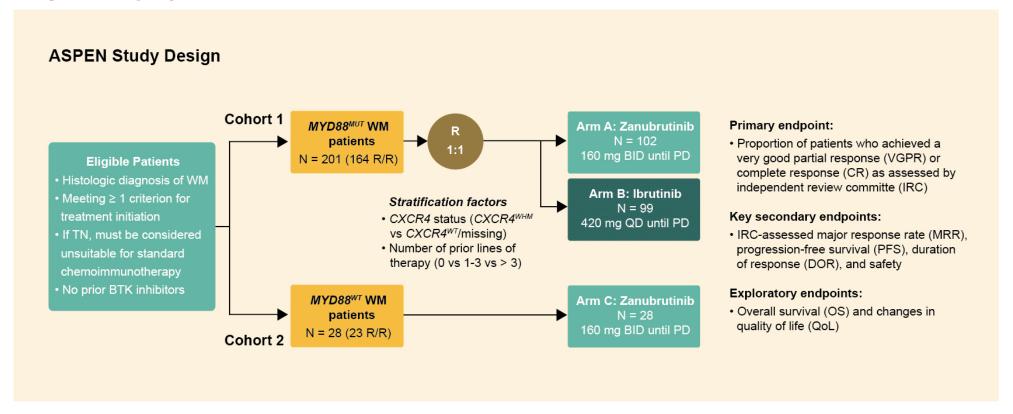
```
Jonas Paludo¹ ○ | Jithma P. Abeykoon¹ | Nirosha D. Perera² | Shayna Sarosiek³ ○ | Joshua Gustine⁴ |
Andres Ramirez-Gamero⁵ | Marzia Varettoni⁴ ○ | Alessandra Tedeschi¹ | Chiara Cavalloni⁴ | Anna Maria Frustaci² ○ |
Levi D. Pederson8 ○ | Saurabh S. Zanwar¹ ○ | Prashant Kapoor¹ | Thomas M. Habermann¹ ○ | Thomas E. Witzig¹ ○ |
Robert A. Kyle¹ | Morie A. Gertz¹ ○ | Susan M. Geyer⁵ | Steven P. Treon³ ○ | Jorge J. Castillo³ ○ | Stephen M. Ansell¹ ○
```


- N = 440 consecutive patiens
- Fixed duration 1L therapy

Treatment regimen

DRC	224 (51.5%)
BR	133 (30.6%)
BDR	78 (17.9%)
Missing	5

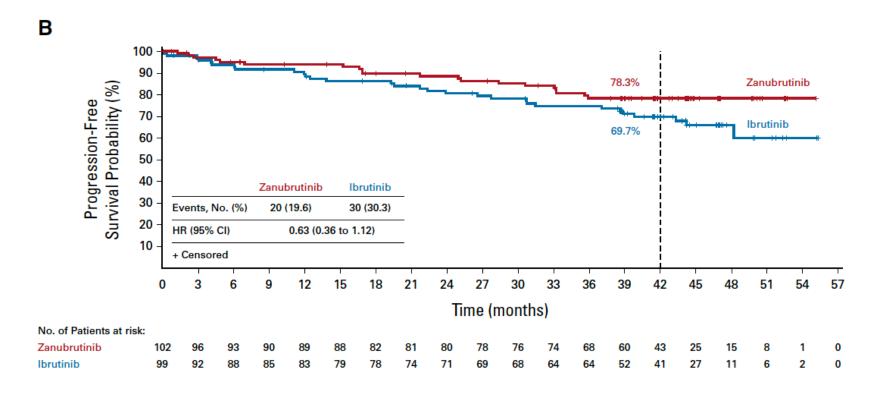
Equal Exposure to Rituximab Maintenance


Paludo J et al Am J Hematol 2025

- Lower Disease-Specific deaths
- Major Response (MaR) = PR + VGPR + CR
- PFS and TTNT better in MaR than for < MaR
- VGPR + CR better than PR in TTNT = PFS and OS

Relapsed/Refractory BTKi studio ASPEN

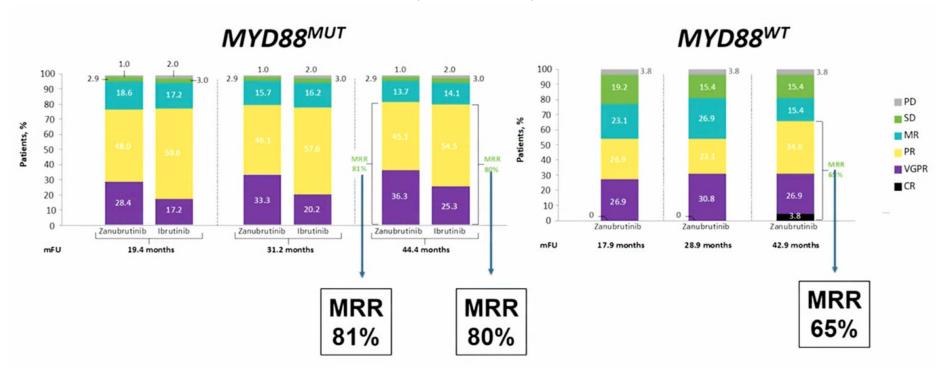
ASPEN trial



More patients randomly assigned to zanubrutinib than ibrutinib were older than 75 years (33.3% v 22.2%, respectively; P = .084) and had CXC motif chemokine receptor 4 mutation (CXCR4MUT) disease (32.4% v 20.2%, respectively; P = .073).

Tam C et al. Blood 2020; Dimopuolos M et al. JCO 2023

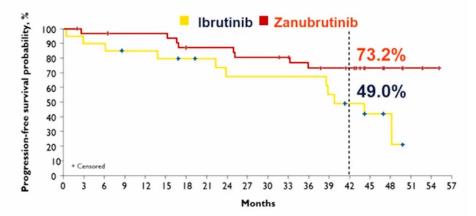
ASPEN trial


Median FU 44.4 mesi

Tam C et al. Blood 2020; Dimopuolos M et al. JCO 2023

ASPEN trial: Long Term

For patients from **cohort 2** (n=26, confirmed *MYD88*-wild type), the ORR was 84.6% and the VGPR+ rate was 30.8% versus 80.8% and 30.8%, respectively, at ASPEN final analysis (Dimopoulos et al. *JCO*. 2023). Median duration of response was 55.7 mo (95% CI, 31.3, 68.4) for cohort 1 and 41.1 mo (95% CI, 15.7, NE) for cohort 2.



IWWM Prague 2024; ASH 2024; Blood 144; 3031-3033

CXCR4 mutated

ASPEN – Long-term follow-up (Cohort 1)

	сх	CR4 ^{MUT}	CXCR4WT		
	Ibrutinib (n=20)	Zanubrutinib (n=33)	Ibrutinib (n=72)	Zanubrutinib (n=65)	
VGPR or better	2 (10.0)	7 (21.2)	22 (30.6)	29 (44.6)	
Major response	13 (65.0)	26 (78.8)	61 (84.7)	54 (83.1)	
Overall response	19 (95.0)	30 (90.9)	68 (94.4)	63 (96.9)	
Time to major response, median (months)	6.6	3.4	2.8	2.8	
Time to VGPR, median (months)	31.3	11.1	11.3	6.5	

	Zanubrutinib	Ibrutinib	
Events, n (%)	8 (24.2)	11 (55.0)	
HR (95% CI)	0.50 (0.20, 1.29)		

Dimopoulos et al, IWWM-12, 2024

Adverse Events of Interest (Cohort 1)

ASPEN - Long-term follow-up

	All g	rades	Grade ≥3	
AEs,ª n (%)	Ibrutinib (n=98)	Zanubrutinib (n=101)	Ibrutinib (n=98)	Zanubrutinib (n=101)
Infection	78 (79.6)	80 (79.2)	27 (27.6)	22 (21.8)
Bleeding	61 (62.2)	56 (55.4)	10 (10.2)	9 (8.9)
Diarrhea	34 (34.7)	23 (22.8)	2 (2.0)	3 (3.0)
Hypertension*	25 (25.5)	15 (14.9)	20 (20.4)*	10 (9.9)
Atrial fibrillation/flutter*	23 (23.5)*	8 (7.9)	8 (8.2)*	2 (2.0)
Anemia	22 (22.4)	18 (17.8)	6 (6.1)	12 (11.9)
Neutropenia* ^b	20 (20.4)	35 (34.7)*	10 (10.2)	24 (23.8)*
Thrombocytopenia	17 (17.3)	17 (16.8)	6 (6.1)	11 (10.9)
Second primary malignancy/ Non-Skin Cancers	17 (17.3)/ 6 (6.1)	17 (16.8)/ 6 (5.9)	3 (3.1)/ 3 (3.1)	6 (5.9)/ 4 (4.0)

Dimopoulos et al, IWWM-12, 2024

- Zanubrutinib exhibited fewer side effects associated with off-target binding, especially cardiovascular toxicities
- Neutropenia occurred early and was neither treatment-limiting nor associated with a higher infection rate
- Zanubrutinib was associated with longer treatment duration and lower risk of dose reduction or discontinuation because of Aes
- Patients previously intolerant to ibrutinib or acalabrutinib did not experience a recurrence
 of treatment-related AEs with zanubrutinib.

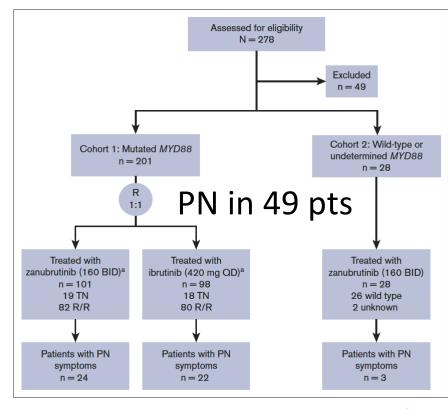
Terapia di manifestazioni più rare: neuropatia da anti-MAG

Table 1. Demographics and disease characteristics of patients with PN symptoms at study entry

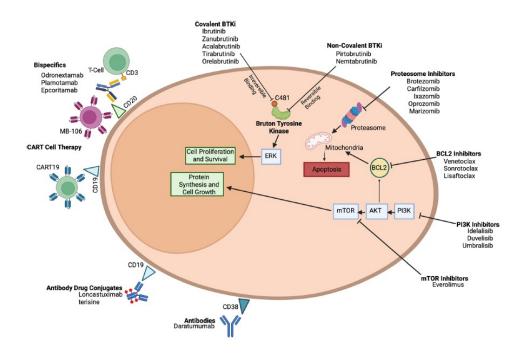
	Cohort 1		Cohort 2	
	Zanubrutinib (n = 24)	Ibrutinib (n = 22)	Zanubrutinib (n = 3)	Total (n = 49)
Age, median (range), y	69.5 (50-87)	68 (57-83)	70 (57-85)	69 (50-87)
Male sex, n (%)	15 (62.5)	14 (63.6)	3 (100)	32 (65.3)
Prior lines of therapy, n (%)				
0	6 (25.0)	4 (18.2)	1 (33.3)	11 (22.4)
1-3	15 (62.5)	16 (72.7)	2 (66.7)	33 (67.3)
>3	3 (12.5)	2 (9.1)	0	5 (10.2)
Genotype by NGS, n (%)				
CXCR4 ^{WT}	18 (75.0)	15 (68.2)	3 (100)	36 (73.5)
CXCR4 ^{MUT}	6 (25.0)	5 (22.7)	0	11 (22.4)
CXCR4 ^{FS}	4 (16.7)	3 (13.6)	0	7 (14.3)
CXCR4 ^{NS}	2 (8.3)	2 (9.1)	0	4 (8.2)
Unknown	0	2 (9.1)	0	2 (4.1)
Baseline IgM (central laboratory), median (range), g/L	32.4 (6.7-68.9)	21 (6.8-54.9)	24 (13.8-42.5)	26 (6.72-68.9)
Baseline anti-MAG Ab, median (range), TU	70 (1 to >70 000)	138 (9 to >70 000)	70 (44-1545)	85 (1 to >70 000)
Anti-MAG Ab elevation (>999 TU) at baseline, n (%)	2 (8.3)	7 (31.8)	1 (33.3)	10 (20.4)

Ab, antibody; FS, frameshift; MUT, mutated; NGS, next-generation sequencing; NS, nonsense; WT, wild type.

- 65% males
- 78% relapsed
- 74% CXCR4 WT


• 71.4% Resolution of symptoms:

78%


84%

66%

TREVISO, 7-8 NOVEMBRE 2025

Relapsed WM: novel therapeutic targets

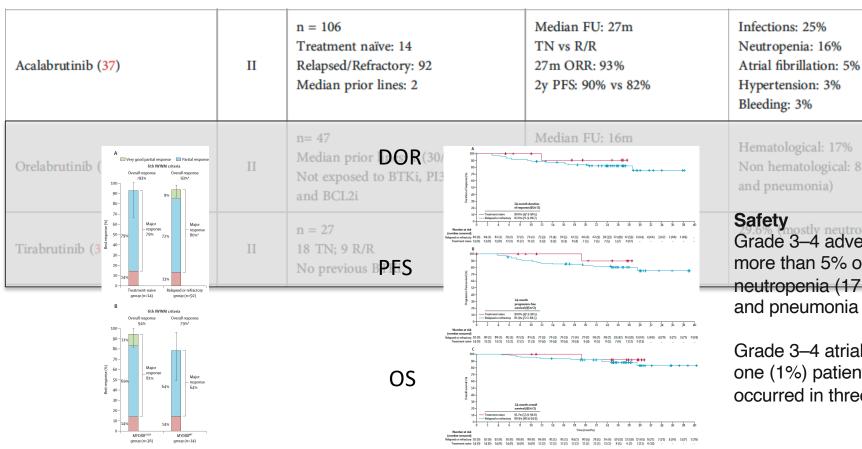

Current Hematologic Malignancy Reports (2024) 19:163–174 Danesin N et al. Front Hematol 2025

TABLE 1 Ongoing and concluded trials with novel treatment approaches in WM.

Drugs	Phase	Population features and sample size	Response rates	Toxicities (≥ grade 3)
Pembrolizumab and Rituximab (34)	п	N = 17 Median prior lines: 3 71% cBTKi refractory	Median FU: 27m 24w ORR: 47% 2y PFS: 19.4% 2y OS: 67%	Globally: 77% (Infections 29%)
Ixazomib, Rituximab and Dexamethasone (35)	I/II	N = 59 Median prior lines: 2 2% cBTKI exposed	Median FU: 24m 2y ORR: 85% 2y PFS: 56% 2y OS: 88%	Neuropathy: 7% Infections: 5%
Idelalisib and Obinutuzumab (36)	п	N = 49 30/49 one previous line 3/49 cBTKi exposed	Median FU: 26m 6m ORR: 71% 2y PFS: 55% 2y OS: 90%	Hematological: 21% Non-hematological: 28% (mostly diarrhea and hepatic cytolysis)
Zanubrutinib vs Ibrutinib (30)	Ш	Cohort 1: MYD88 ^{MUT} N = 201 Cohort 2: MYD88 ^{WT} N = 28 Median previous lines: 1-3	Median FU: 44m Cohort 1: VGPR+CR rates (36.8% vs 25.7%) Cohort 2: VGPR+CR 30%	(Ibrutinib vs Zanubrutinib) Infections (9% vs 1%) Hypertension (11% vs 6%) Atrial fibrillation (4% vs 2%) Neutropenia (8% vs 20%)
Acalabrutinib (37)	п	n = 106 Treatment naïve: 14 Relapsed/Refractory: 92 Median prior lines: 2	Median FU: 27m TN vs R/R 27m ORR: 93% 2y PFS: 90% vs 82%	Infections: 25% Neutropenia: 16% Atrial fibrillation: 5% Hypertension: 3% Bleeding: 3%
Orelabrutinib (38)	п	n= 47 Median prior lines: 1 (30/47) Not exposed to BTKi, P13Ki, Syk-i, and BCL2i	Median FU: 16m 1y ORR: 90.3% 1y MRR: 81.5% Median PFS/OS not reached	Hematological: 17% Non hematological: 8.6% (mostly cataracts and pneumonia)
Tirabrutinib (39)	п	n = 27 18 TN; 9 R/R No previous BTKi.	Median FU: 8m MRR: 88.9% ORR: 96.3%	29.6% (mostly neutropenia and leucopenia)
Pirtobrutinib + Venetoclax (40)	п	n = 16 Median prior line: 1 Previous cBTKi exposure 9/16	Median FU: 6m (3-12) ORR 100% (VGPR 56%, PR 31%, MR 13%).	No arrhythmic events No other data available
Venetoclax (41)	п	n = 32 Median prior lines: 2 Previous BTKi 16/32	Median FU: 33m ORR 84% MRR 81%	Hematological: 45%, mostly neutropenia
Iopofosine 131 (42)	п	n = 65 Median prior lines: At least 2 including BTKi	Median FU: 8.8mo ORR 80% MRR 56%	Neutropenia 69% Thrombocytopenia 80% Infections 12%

BTKi, Bruton tyrosine kinase inhibitors; BCL2i, BCL2 inhibitors; ORR, overall response rate; MRR, major response rate; FU, follow up; VGPR, very good partial response; PR, partial response; MR, minor response.

Relapsed WM: novel covalent BTKi

Hematological: 17% Non hematological: 8.6% (mostly cataracts

Grade 3–4 adverse events occurring in more than 5% of patients were neutropenia (17 [16%] of 106 patients) and pneumonia (7 [7%]).

Grade 3–4 atrial fibrillation occurred in one (1%) patient and grade 3-4 bleeding occurred in three (3%) patients.

Lancet Haematol 2020;7: e112-21

Lancet Haematol 2020;7: e112-21

Relapsed WM: novel covalent BTKi

Orelabrutinib (38)	II	n= 47 Median prior lines: 1 (30/47) Not exposed to BTKi, PI3Ki, Syk-i, and BCL2i	Median FU: 16m 1y ORR: 90.3% 1y MRR: 81.5% Median PFS/OS not reached	Hematological: 17% Non hematological: 8.6% (mostly cataracts and pneumonia)
--------------------	----	---	---	---

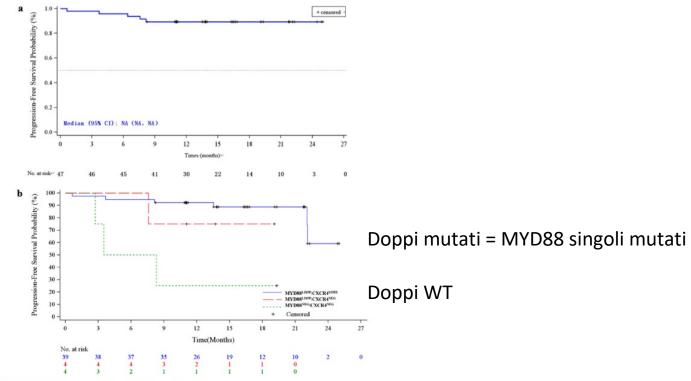
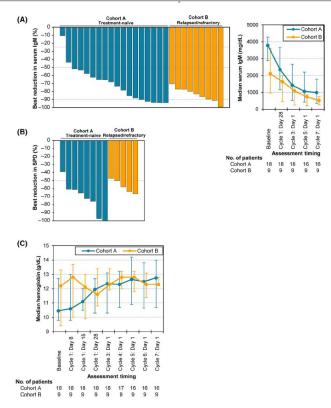



Figure 4. PFS Kaplan-Meier curve (ITT) (a) and PFS by genotype (b). NA: not available.

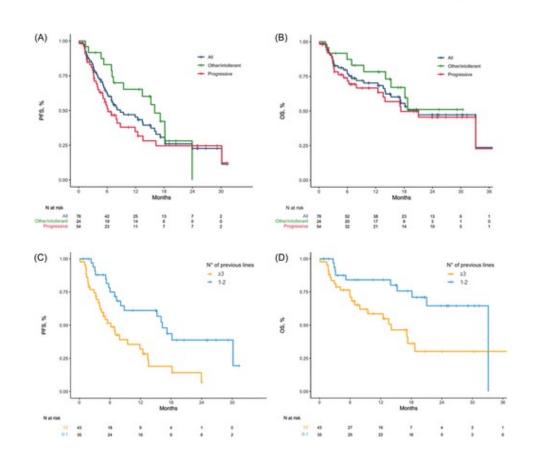
Relapsed WM: novel covalent BTKi

Tirabrutinib (39)	II	n = 27 18 TN; 9 R/R No previous BTKi.	Median FU: 8m MRR: 88.9% ORR: 96.3%	29.6% (mostly neutropenia and leucopenia)

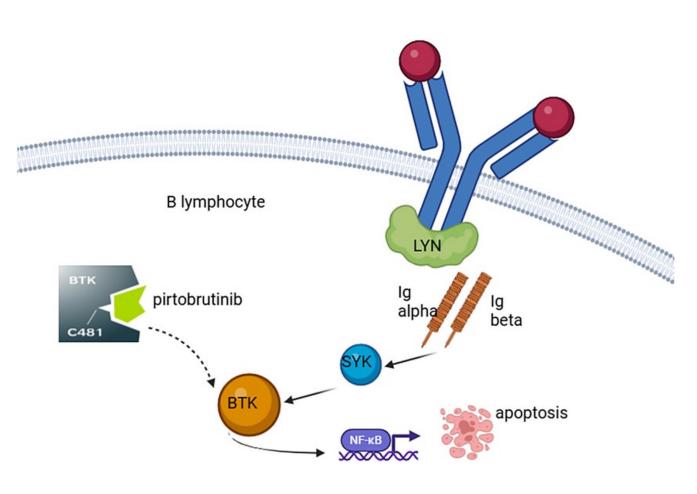
Sekiguch N Cancer Sci 2020

R/R WM: Advanced lines (>2 prior lines including cBTKi)

HemaSphere



Salvage treatment after covalent BTKi failure: An unmet need in clinical practice in Waldenstrom macroglobulinemia


① Correction(s) for this article ~

Anna Maria Frustaci Arianna Zappaterra, Andrea Galitzia, Andrea Visentin, Michele Merli, Rita Rizzi, Isacco Ferrarini, Simone Ferrero, Vanessa Innao, Claudia Baratè, Pierluigi Zinzani, Benedetta Puccini, Francesco Autore, Monica Tani, Angela Ferrari, Gioacchino Catania, Maura Nicolosi, Raffaella Pasquale, Marina Motta, Roberta Murru, Silvia Gambara, Francesca Rezzonico, Marzia Varettoni, Emanuele Cencini, Enrico Lista, Nicolò Danesin, Bianca Maria Granelli, Marina Deodato, Francesco Piazza, Alessandra Tedeschi ... See fewer authors ^

Non covalent BTKi

NC BTKi inhibits BTK through a reversible binding that is independent of the cysteine residue, even in the presence of mutations at the C481 site.

Relapsed WM: non covalent BTKI PIRTOBRUTINIB

BRUIN study phasel/II basket trial (LNH, n = 725)

78 R/R WM

78% ≥1 prior BTKi (≥2: 13/61, 21%),

64% CIT+BTKi

Efficacy Safety

Total population (n=72) MRR 68%, PR 44%, VGPR 24%, no CR Safety cohort of all pirtobrutinib-treated patients with

cBTKi naïve: MRR: 69%, PR:47%, VGPR: 22%

cBTKi pretreated: MRR:64%, PR: 40%, VGPR: 24%

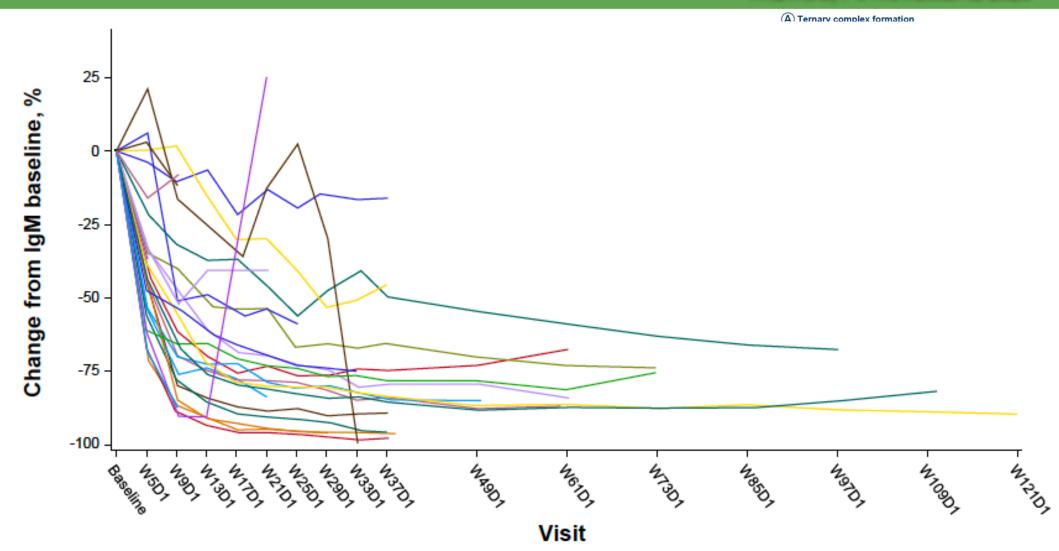
CIT + cBTKi pretreated: MRR:64%, PR: 43%, VGPR: 21%,

Most frequent TEAEs: fatigue (26%), diarrhea (22%), contusion (19%)

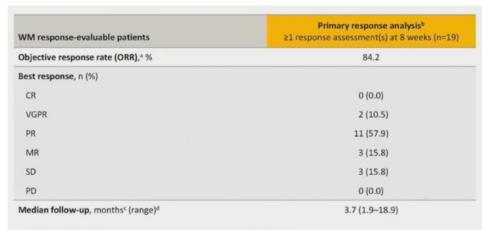
Most frequent Grade≥3 TEAE: neutropenia (20%).

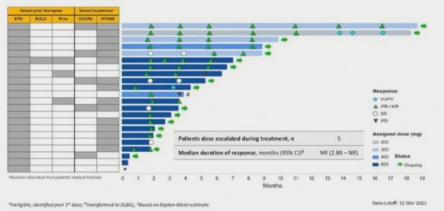
B-cell malignancies (n=725)

Low rates of Grade≥3 TEAEs hypertension (3%), hemorrhage (2%), atrial fibrillation/flutter (1%) were observed. Overall, 15 (2%) patients discontinued due to treatment-related AE.


Relapsed WM: non covalent BTKi NEMTABRUTINIB

Nemtabrutinib (46) NCT04728893	II	WM, R/R to chemoimmunotherapy and covalent BTKi	ORR	ibrutinib C ₃ H ₃₂ N ₄ O ₂ b	The state of the s	
				ARQ 531 C ₂₅ H ₂₃ CIN ₄ O ₄	BTK-Ibrutinib PDB ID: SP9J	BTK-ARQ 531 PDB ID: 6E4F


A Phase 2 Study to Evaluate the Efficacy and Safety of MK-1026 in Participants With Hematologic Malignancies


- Dose Escalation and Confirmation (Part 1)
- Cohort Expansion (Part 2).
- Determination of the recommended phase 2 dose (RP2D) in Part 1
- Part 2 using 8 disease-specific expansion cohorts (Cohorts A to H).

TREVISO, 7-8 NOVEMBRE 2025

Phase 1: NX-5948 in Relapsed/Refractory WM

N=22

Median Prior Therapies: 3 (2-5) Previous BTK-i: 22 (4 NC-BTK-i)

Previous Chemo-Immunotherapy: 21

MYD88^{Mut}: 16 (68%) CXCR4^{Mut}: 5 (23%) El-Sharkawi D, et al. EHA, Poster Presentation 2025

Relapsed WM: BCL2i VENETOCLAX

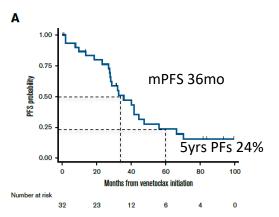
Long-term follow-up of venetoclax monotherapy in previously treated patients with Waldenström macroglobulinemia

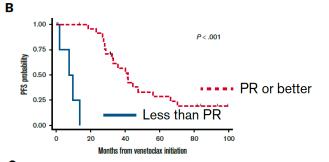
Jorge J. Castillo, ^{1,2} Alberto Guijosa, ¹ John N. Allan, ³ Tanya Siddiqi, ⁴ Ranjana H. Advani, ⁵ Catherine A. Flynn, ¹ Kirsten Meid, ¹ Nina Budano, ¹ Julia Nguyen, ¹ Andres Ramirez-Gamero, ⁶ Nicholas Tsakmaklis, ¹ Zachary R. Hunter, ¹ Christopher J. Patterson, ¹ Steven P. Treon, ^{1,2} and Shayna Sarosiek ^{1,2}

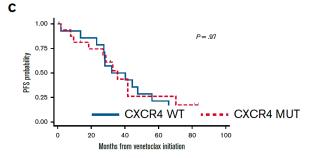
Table 1. Selected baseline characteristics

Characteristic	Participants (N = 32)		
Age at WM diagnosis, median (range), y	58 (38-72)		
Age at venetoclax initiation, median (range), y	66 (39-80)		
Male sex, n (%)	18 (56)		
Serum IgM level, median (range), mg/dL	3512 (642-7970)		
Hemoglobin level, median (range), g/dL	10.6 (6.4-13.5)		
Platelet count, median (range), ×10 ³ /μL	216 (60-445)		
Serum β2-microglobulin level, median (range), mg/L	3.6 (1.9-9.8)		
Low IPSSWM score, n (%)	12 (38)		
Intermediate IPSSWM score, n (%)	8 (25)		
High IPSSWM score, n (%)	12 (38)		
Bone marrow involvement, median (range), %	35 (4-90)		
Adenopathy ≥1.5 cm, n (%)	9 (28)		
Splenomegaly ≥15 cm, n (%)	8 (25)		
MYD88 L265P mutation, n (%)	32 (100)		
CXCR4 mutation, n (%)	17 (53)		
No. of previous therapies, median (range)	2 (1-10)		
Previous anti-CD20 therapy, n (%)	28 (88)		
Previous BTK inhibitor, n (%)	16 (50)		

N=32 50% after BTKi ORR 84% >PR 81% VGPR 19%


mPFS 36mo


5yrs PFs 24%


5yrs OS 95%

Most common AE =>G2: neutropenia in 53%

TREVISO, 7-8 NOVEMBRE 2025

Castillo JJ Blood Adv 2025

Baseline Patient Characteristics (cont.)

HEMATOLOGIC MALIGNANCIES-LYMPHOMA AND CHRONIC LYMPHOCYTIC LEUKEMIA

Check for upda

TPS7090

ASCO 2024

Poster Session

BGB-11417-203: An ongoing, phase 2 study of sonrotoclax (BGB-11417), a nextgeneration BCL2 inhibitor, in patients with Waldenström macroglobulinemia.

Hui-Peng Lee, Stephen Opat, John Hrom, David S. Kliman, Paula Marlton, Peng Liu, Chenmu Du, Amber Lussier, Jun Zhang, Haiyi Guo, Steven P. Treon; Flinders Medical Centre, Bedford Park, SA, Australia; Lymphoma Research Group, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia; Hattiesburg Clinic, Hattiesburg, MS; Genesis Care North Shore, St Leonards, NSW, Australia; Princess Alexandra Hospital and University of Queensland, Brisbane, QLD, Australia; Affiliated Zhongshan Hospital of Fudan University, Shanghai, China; BeiGene (Beijing) Co, Ltd, Beijing, China; BeiGene USA, Inc, San Mateo, CA; BeiGene (Beijing) Co, Ltd, Shanghai, China; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA

	Prior BTK innibitor, n (%)	4 (07)	4 (၁૫)	ა (ხს)	1 (100)	1∠ (७∪)
	BTK inhibitor as last therapy, n (%)	-	-	-	-	9 (45)
a M	Prior BTK inhibitor duration, median (range), months	60.7 (55.3-85.4)	48.4 (19.4-54.5)	13.1 (1.1-25.1)	68.5 (68.5-68.5)	53.7 (1.1-85.4)

BTKi, BTK inhibitor; MR, minor response; NE, not evaluable; VGPR, very good partial response.

BIKI

Time since first dose, months

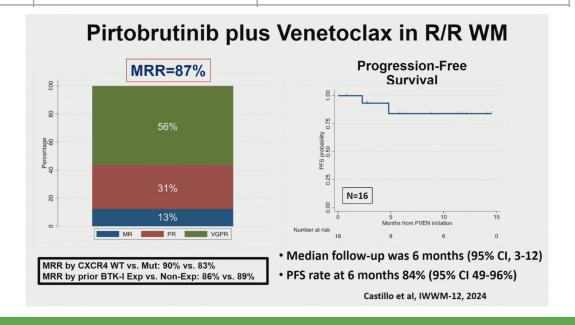
Development of BCL2i and c/ncBTKi in WM:

- 1) Frontline setting
- combination of venetoclax plus rituximab vs ibrutinib plus rituximab
- 2) Relapsed
- combination of venetoclax plus pirtobrutinib.
- combo sonrotoclax plus zanubrutinib
- https://www.clinicaltrials.gov/study/NCT04840602?term=AREA%5BBasicSearch%5D(gp2013)&rank=10
- https://www.clinicaltrials.gov/study/NCT05734495?term=PIRTOBRUTINIB&rank=1
- ClinicalTrials.gov identifier: NCT04840602
- https://www.clinicaltrials.gov/study/NCT05952037

Relapsed WM: non covalent BTKI PIRTOBRUTINIB PLUS BCL2 INHIBITORS

A Phase II Study of Pirtobrutinib and Venetoclax in Previously Treated Patients with Waldenström Macroglobulinemia: An Interim Analysis

Jorge J. Castillo, MD¹, Shayna R Sarosiek¹, Andrew R. Branagan, MD², Gottfried von Keudell, MDPhD³, Catherine A. Flynn, NP¹, Nina S Budano¹, Alexandra N. Eurell¹, Kirsten Meid, MPH¹, Andres Ramirez-Gamero, MD¹, Maria Luisa Guerrera, MD¹, Amanda Kofides, BA¹, Shirong Liu, MDPhD¹, Xia Liu, MD¹, Kris Richardson, PhD¹, Nickolas Tsakmaklis¹, Christopher J Patterson, MPH, MBA¹, Zachary R Hunter, PhD¹, Steven P. Treon, MDPhDFRCP⁴

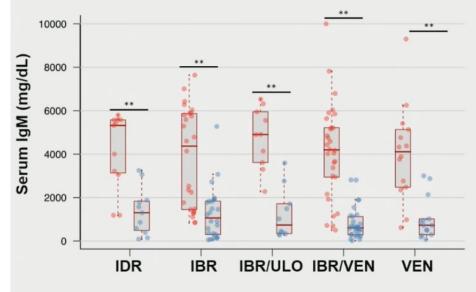

n = 16

Median prior line: 1

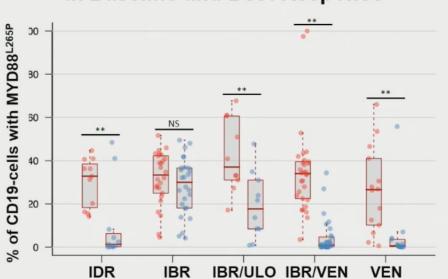
Previous cBTKi exposure 9/16

Median FU: 6m (3-12) ORR 100% (VGPR 56%, PR 31%, MR 13%).

No arrhythmic events No other data available

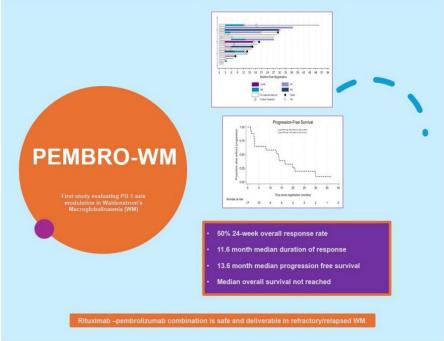


ASH annual meeting 2024


NS: not significant; *p<0.05; **p<0.005

Serum IGM vs. changes in MYD88^{L265P} burden in prospective clinical trials in WM patients

BM CD19⁺ MYD88^{L265P} at Baseline and Best Response



Tsakmaklis et al, ASH 2024, Manuscript submitted.

Immunotherapy?

Relapsed WM: immunotherapy

Drugs	Phase	Population features and sample size	Response rates	Toxicities (≥ grade 3)
Pembrolizumab and Rituximab (34)	п	N = 17 Median prior lines: 3 71% cBTKi refractory	Median FU: 27m 24w ORR: 47% 2y PFS: 19.4% 2y OS: 67%	Globally: 77% (Infections 29%)

«PembroWM is the first study to evaluate the feasibility of PD-1 axis modulation in WM and has shown that in combination with Rituximab the combination is safe and deliverable»

Kothari J et al. Br J Haematol. (2024) 205:2273-81.

Regimen	Phase	Inclusion Criteria	Primary endpoint	
Epcoritamab (51) NCT06510491	II	R/R WM	ORR	
Brexucabtagene Autoleucel (52) NCT05537766	II	R/R WM	CR, VGPR, ORR	
MB-106 (53) NCT05360238	I	3 NHL (1 WM) 5.5 median prior lines	ORR Third gene (MB-106)	ration CD20 CAR-T

^{51.} Epcoritamab in previously treated WM. Available online at: https://clinicaltrials.gov/study/NCT06510491 (Accessed June 29, 2025).

^{52.} Study of brexucabtagene autoleucel in adults with rare B-cell Malignancies (ZUMA-25). Available online at: https://clinicaltrials.gov/study/NCT05537766 (Accessed June 29, 2025).

^{53.} Shadman M, Caimi PF, O'Brien SM, Reagan PM, Dezube B, Navaratnarajah P, et al. Efficacy and safety of a third generation CD20 CAR-T (MB-106) for treatment of relapsed/refractory indolent B-cell non-Hodgkin lymphoma: phase-1 results from a multicenter trial. ASH Annu meeting. (2023) 142 (supplement 1):2102. doi: 10.1182/blood-2023-175007

Update on WM: take home messages

- Classifications: WHO HEM5 and ICC 2022 divergent
- At least two distinct types of MYD88^{L265P}-mutated WM
- Long-term toxicity of CIT
- Longer f.u. of efficacy/safety of cBTKi Ibrutinib and Zanubrutinib
- **Novel 1L** approaches:
- Acala BR (studio BRAWN)
- Zanu BR (studio cinese)
- Bor-Ibr-R + maintenance Ibr + R (studio Buske)
- Carlfilzomib + Ibrutinib versus Ibrutinib
- Ibrutinib + venetoclax

Relapsed WM:

- Novel cBTKI
- ncBTKI
- PROTACS BTKi degraders
- BCL2i
- COMBOS
- **Immunotherapy** is under initial development
- Axicel; MB-106 (CAR-T)
- Epcoritamab (HOVON study)

Acknowledgements

University of Padua - Department of Medicine Padua University Hospital - Hematology

Chief: Prof. Livio Trentin

Lymphoma Physicians

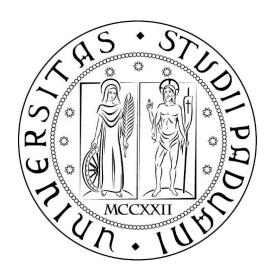
Dott.ssa Greta Scapinello

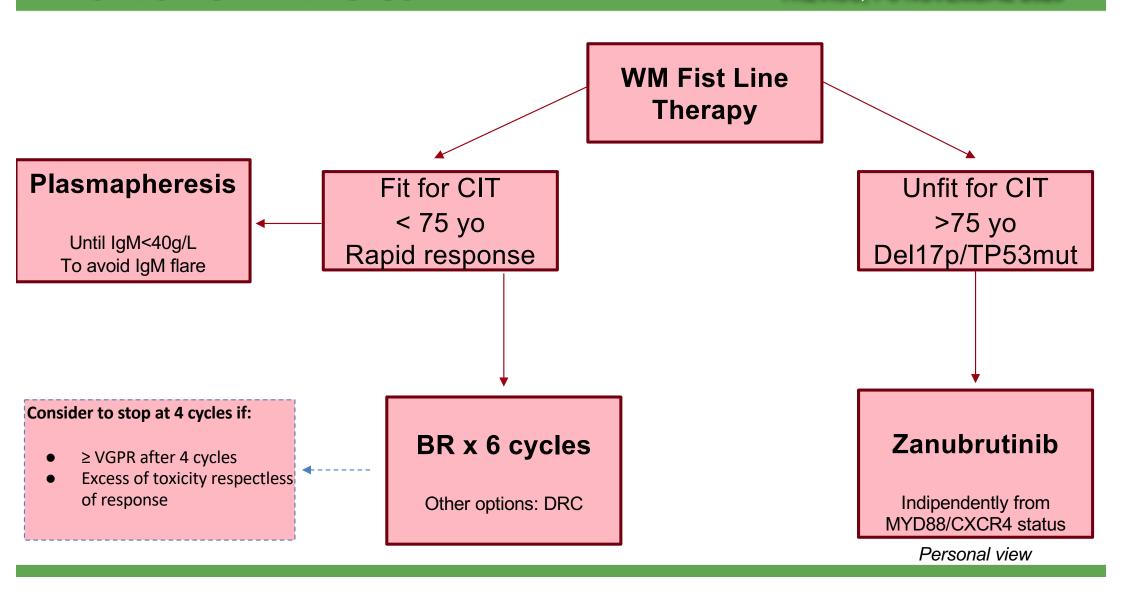
Dott. Nicolò Danesin (Resident)

Dott. Marco Carraro (Resident)

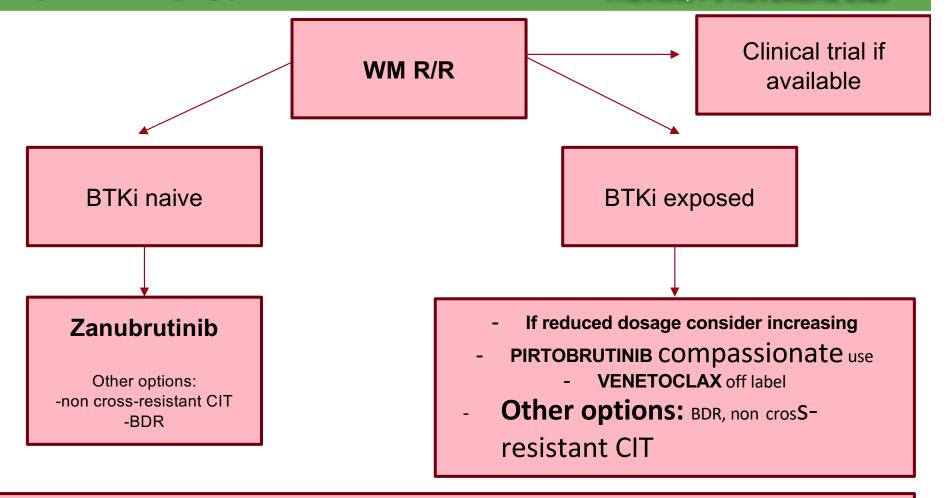
Dott. Giovanni Leone

CLL team


Dott. Andrea Visentin


Dott. Francesco Angotzi

Dorr. Alessandro Cellini


for their support in patients' management and data analysis

You all for your attention!

TREVISO, 7-8 NOVEMBRE 2025

ADVANCED LINES: BTK degraders / Other nc BTKi (i.e. Nemtabrutinib) / Bispecific antibodies (Epcoritamab) / Loncastuximab